Roll No.

E-309

M. A./M. Sc. (First Semester) EXAMINATION, Dec.-Jan., 2020-21

MATHEMATICS

Paper First

(Advanced Abstract Algebra—I)

Time : Three Hours]

[Maximum Marks : 80

[Minimum Pass Marks : 16

Note : Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note : Attempt all questions.

Choose the correct answer :

1. S_n is solvable :

- (a) for each positive integer n
- (b) for each prime number n
- (c) for $n \leq 4$
- (d) for $n \ge 5$

- 2. Which one of the following is correct for solvable group ?
 - (a) Abelian group is not solvable
 - (b) Nilpotent group is not solvable
 - (c) Cyclic group is not solvable
 - (d) *p*-group is solvable
- 3. Jordan-Holder theorem implies :
 - (a) fundamental theorem of algebra
 - (b) fundamental theorem of arithmetic
 - (c) fundamental theorem of homomorphism
 - (d) fundamental theorem of field
- 4. If H is the maximal normal subgroup of G, then :
 - (a) G/H is abelian
 - (b) G/H is cyclic
 - (c) G/H is simple
 - (d) G/H is *p*-group
- 5. Which order of the group is not necessarily nilpotent ?
 - (a) 27
 - (b) 24
 - (c) 32
 - (d) 25
- 6. Set of all algebraic elements of K over a field F is :
 - (a) Ring
 - (b) Integral domain
 - (c) Division ring
 - (d) Field

- 7. Degree of splitting field of x^{p-1} over Q, p being a prime number is :
 - (a) *p*
 - (b) *p* ⁻ 1
 - (c) 2*p*
 - (d) *p*!
 - 8. Which one of the following statements is not true ?
 - (a) C is algebraic extension of R.
 - (b) C is normal extension of R.
 - (c) C is separable extension of R.
 - (d) C is infinite extension of R.
 - 9. There exists no field of order :
 - (a) 18
 - (b) 81
 - (c) 125
 - (d) 72
 - 10. Which one of the following is algebraically closed field ?
 - (a) Q
 - (b) R
 - (c) C
 - (d) Q ($\sqrt{2}$)
 - 11. Characteristic of a finite field is :
 - (a) any positive integer
 - (b) prime number
 - (c) in the form p^n , p is a prime
 - (d) n^{P} , p is a prime number

- 12. A field F is called perfect field if :
 - (a) all finite extensions of F are normal.
 - (b) all finite extensions of F are separable.
 - (c) all finite extensions of F are inseparable.
 - (d) all finite extensions of F are simple extension
- 13. Which is conjugate of w over Q?
 - (a) *i*
 - (b) π
 - (c) w^2
 - (d) *e*
- 14. Let G be a finite group of automorphism of a field K, F_0 is the fixed field under G, then $[K, F_0] = o(G)$ is called :
 - (a) Galois's theorem
 - (b) Kronecker's theorem
 - (c) Artin's theorem
 - (d) Langrage's theorem
- 15. Which is the fixed field of Q ($\sqrt{2}$) under Aut Q ($\sqrt{2}$) ?
 - (a) Q
 - (b) Q $(\sqrt{2})$
 - (c) R
 - (d) C

- 16. Which one is incorrect :
 - (a) All polynomials of degree 2 are solvable by radicals.
 - (b) All polynomials of degree 3 are solvable by radicals.
 - (c) All polynomials of degree 4 are solvable by radicals.
 - (d) All polynomials of degree 5 are solvable by radicals.
- 17. Which one of the following is not elementary symmetric function of x_1, x_2, x_3 :
 - (a) $x_1 + x_2 + x_3$
 - (b) $x_1 x_2 x_3$
 - (c) $x_1x_2 + x_2x_3 + x_3x_1$
 - (d) $x_1^2 + x_2^2 + x_3^2$
- 18. The generic polynomial $p_n(t)$ of degree *n* is not solvable by radicals over $F(a_1, a_2, ..., a_n)$ where $a_1, a_2, ..., a_n$ are elementary symmetric function :
 - (a) for $n \ge 2$
 - (b) for $n \ge 3$
 - (c) for $n \ge 4$
 - (d) for $n \ge 5$
- 19. The roots of polynomial x^n 1 over Q form :
 - (a) A group but not abelian
 - (b) Abelian group but not cyclic
 - (c) Cyclic group
 - (d) None of the above

[6]

20. Let $F \leq E \leq K$, then which one of the following is correct ?

- (a) $G(K, F) \leq G(K, E)$
- (b) $G(K, E) \leq G(K, F)$
- (c) G(K, E) = G(K, F)
- (d) o(G(E, F)) = o(G(K, F))

Section—B

2 each

(Very Short Answer Type Questions)

Note : Attempt all questions.

- 1. Define *n*th derived set of a group.
- 2. Define simple extension.
- 3. What is the degree of Q ($\sqrt{2}$, *i*) over Q ?
- 4. Define algebraically closed field.
- 5. Define primitive element.
- 6. Write splitting field of $x^3 2$ over Q.
- 7. Define fixed field of group of automorphism G of R.
- 8. State Abel's theorem.

Section—C 3 each

(Short Answer Type Questions)

Note : Attempt all questions.

- 1. Show that every group of order p^n is nilpotent.
- 2. Show that A_n is not solvable for $n \ge 5$.
- 3. Show that every finite extension is algebraic extension but converse need not be true.
- 4. Show that an irreducible polynomial f(x) over a field F of characteristic p > 0 is inseparable if and only if f(x) ∈ F[x^p].

- Let E and K be any two fields. If σ₁, σ₂,...,σ_n are n distinct monomorphism of E into K then show that they are linearly independent.
- 7. Show that multiplicative group of any finite field is cyclic.
- 8. Prove that $x^5 4x + 2$, is not solvable by radicals over Q.

Section—D 5 each

(Long Answer Type Questions)

Note : Attempt all questions.

1. Prove that a group G is nilpotent if and only if G has a normal series :

$$(\rho) \leq G_0 \leq G_1 \leq \dots \leq G_m = G$$

such that $\frac{G_i}{G_i - 1} \leq z \left(\frac{G}{G_{i-1}}\right)$ for all $i = 1, 2 \dots m$.

Or

Show that every subgroup and homomorphic image of nilpotent group is nilpotent.

2. Show that an element $a \in K$ is algebraic over F if and only if [F(a): F] is finite.

Or

Show that if L is algebraic extension of K and K is algebraic extension of F, then L is also algebraic extension of F.

P. T. O.

- [8]
- Let F be a field having q elements. Then prove that F is the splitting field of x⁹ x over prime subfield.

Or

Let E be an algebraic extension of field F and let $\sigma: F \rightarrow L$ be an embedding of F into an algebrically closed field L. Then show that σ can be extended to an embedding $\eta: E \rightarrow L$.

- 4. Let K be a finite normal extension of field F of characteristic zero. E be a subfield of K containing F. Then prove that :
 - (i) [K:E] = o G (K, E) and
 [E:F] = index of G (K, E) in G (K, F)
 - (ii) E is normal extension of F if and only if G (K, E) is normal subgroup of G (K, F).

Or

Prove that $f(x) \in F[x]$ is solvable by radicals over F if and only if its splitting field E over F has solvable Galois group G (E, F).